Pontifícia Universidade Católica do Rio de Janeiro

Felipe Augusto Weilemann Belo

Desenvolvimento de Algoritmos de Exploração e Mapeamento Visual para Robôs Móveis de Baixo Custo

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pósgraduação em Engenharia Elétrica do Departamento de Engenharia Elétrica da PUC-Rio.

> Orientador: Prof. Abraham Alcaim Co-Orientador: Prof. Marco Antonio Meggiolaro

Rio de Janeiro Abril de 2006

Felipe Augusto Weilemann Belo

Desenvolvimento de Algoritmos de Exploração e Mapeamento Visual para Robôs Móveis de Baixo Custo

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Abraham Alcaim Orientador Centro de Estudos em Telecomunicações - PUC-Rio

Prof. Marco Antonio Meggiolaro Co-Orientador Departamento de Engenharia Mecânica - PUC-Rio

> Prof. Armando Morado Ferreira IME

Prof. Raul Queiroz Feitosa Departamento de Engenharia Elétrica – PUC-Rio

Prof. Marcelo de Andrade Dreux Departamento de Engenharia Mecânica - PUC-Rio

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 06 de abril de 2006

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Felipe Augusto Weilemann Belo

Graduou-se em Engenharia de Controle e Automação na Universidade PUC-Rio (Pontificia Universidade Católica do Rio de Janeiro) em 2004.

Ficha catalográfica

Belo, Felipe Augusto Weilemann

Desenvolvimento de algoritmos de exportação e mapeamento visual para robôs móveis de baixo custo / Felipe Augusto Weilemann Belo ; orientadores: Abraham Alcaim, Marco Antonio Meggiolaro. – Rio de Janeiro : PUC-Rio, Departamento de Engenharia Elétrica, 2005.

276 f. ; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica

Inclui bibliografia

1. Engenharia elétrica – Teses. 2. Robôs móveis. 3. SLAM. 4. Teoria da informação. 5. Visual tracking. 6. SIFT. 7. Transformada de Fourier. 8. Transformada de Mellin. 9. Métodos de registro de imagens. 10. Visão computacional. 11. Algoritmos genéticos. I. Alcaim, Abraham. II. Meggiolaro, Marco Antonio. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. IV. Título.

CDD: 621.3

À minha mãe e meu orientador Marco Antonio Meggiolaro

Agradecimentos

Aos orientadores Marco Antonio Meggiolaro e Abraham Alcaim pela paciência, estímulo, assistência, inspiração e confiança dispensados para à realização deste trabalho.

Ao CNPq e PUC-Rio, pelos auxílios concedidos, sem os quais não teria sido possível realizar este trabalho.

À minha mãe, meu pai, minha avó, meu irmão e minha tia Geny.

À Fernanda Borges Caixeta e sua família.

Aos professores da PUC-Rio.

A meus amigos.

A todos os amigos e familiares que de alguma forma me estimularam e ajudaram.

Resumo

Belo, Felipe Augusto Weilemann; Alcaim, Abraham (Orientador). Desenvolvimento de Algoritmos de Exploração e Mapeamento Visual para Robôs Móveis de Baixo Custo. Rio de Janeiro, 2006. 276p. Dissertação de Mestrado - Departamento de Engenharia Elétrica, Pontificia Universidade Católica do Rio de Janeiro.

Ao mesmo tempo em que a autonomia de robôs pessoais e domésticos aumenta, cresce a necessidade de interação dos mesmos com o ambiente. A interação mais básica de um robô com o ambiente é feita pela percepção deste e sua navegação. Para uma série de aplicações não é prático prover modelos geométricos válidos do ambiente a um robô antes de seu uso. O robô necessita, então, criar estes modelos enquanto se movimenta e percebe o meio em que está inserido através de sensores. Ao mesmo tempo é necessário minimizar a complexidade requerida quanto a hardware e sensores utilizados. No presente trabalho, um algoritmo iterativo baseado em entropia é proposto para planejar uma estratégia de exploração visual, permitindo a construção eficaz de um modelo em grafo do ambiente. O algoritmo se baseia na determinação da informação presente em sub-regiões de uma imagem panorâmica 2-D da localização atual do robô obtida com uma câmera fixa sobre o mesmo. Utilizando a métrica de entropia baseada na Teoria da Informação de Shannon, o algoritmo determina nós potenciais para os quais deve se prosseguir a exploração. Através de procedimento de Visual Tracking, em conjunto com a técnica SIFT (Scale Invariant Feature Transform), o algoritmo auxilia a navegação do robô para cada nó novo, onde o processo é repetido. Um procedimento baseado em transformações invariáveis a determinadas variações espaciais (desenvolvidas a partir de Fourier e Mellin) é utilizado para auxiliar o processo de guiar o robô para nós já conhecidos. Também é proposto um método baseado na técnica SIFT. Os processos relativos à obtenção de imagens, avaliação, criação do grafo, e prosseguimento dos passos citados continua até que o robô tenha mapeado o ambiente com nível pré-especificado de detalhes. O conjunto de nós e imagens obtidos são combinados de modo a se criar um modelo em grafo do ambiente. Seguindo os caminhos, nó a nó, um robô pode navegar pelo ambiente já explorado. O método é particularmente adequado para ambientes planos. As componentes do algoritmo proposto foram desenvolvidas e testadas no presente trabalho. Resultados experimentais mostrando a eficácia dos métodos propostos são apresentados.

Palavras-chave

Robôs Móveis, SLAM, Teoria da Informação, Visual Tracking, SIFT, Transformada de Fourier, Transformada de Mellin, Métodos de Registro de Imagens, Visão Computacional, Algoritmos Genéticos. Belo, Felipe Augusto Weilemann; Alcaim, Abraham (Advisor). Exploration and Visual Mapping Algorithms Development for Low Cost Mobile Robots. Rio de Janeiro, 2006. 276p. MSc Dissertation -Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

As the autonomy of personal service robotic systems increases so has their need to interact with their environment. The most basic interaction a robotic agent may have with its environment is to sense and navigate through it. For many applications it is not usually practical to provide robots in advance with valid geometric models of their environment. The robot will need to create these models by moving around and sensing the environment, while minimizing the complexity of the required sensing hardware. This work proposes an entropy-based iterative algorithm to plan the robot's visual exploration strategy, enabling it to most efficiently build a graph model of its environment. The algorithm is based on determining the information present in sub-regions of a 2-D panoramic image of the environment from the robot's current location using a single camera fixed on the mobile robot. Using a metric based on Shannon's information theory, the algorithm determines potential locations of nodes from which to further image the environment. Using a Visual Tracking process based on SIFT (Scale Invariant Feature Transform), the algorithm helps navigate the robot to each new node, where the imaging process is repeated. An invariant transform (based on Fourier and Mellin) and tracking process is used to guide the robot back to a previous node. Also, an SIFT based method is proposed to accomplish such task. This imaging, evaluation, branching and retracing its steps continues until the robot has mapped the environment to a pre-specified level of detail. The set of nodes and the images taken at each node are combined into a graph to model the environment. By tracing its path from node to node, a service robot can navigate around its environment. This method is particularly well suited for flat-floored environments. The components of the proposed algorithm were developed and tested. Experimental results show the effectiveness of the proposed methods.

Keywords

Mobile Robots, SLAM, Information Theory, Visual Tracking, SIFT, Fourier Transform, Mellin Transform, Image Registration Methods, Computational Vision, Genetics Algorithms.

Sumário

1. Introdução	19
1.1. Motivação	19
1.2. Navegação, Localização e Mapeamento para Robôs Móve	is 21
1.2.1. Robôs Autônomos	21
1.2.2. Robôs Móveis	22
1.2.3. Representação do Ambiente	23
1.2.4. Técnicas de Exploração	25
1.3. Objetivo	26
1.4. Metodologia	28
1.5. Organização da Tese	29
2. Transformações Integrais Invariáveis	31
2.1. Transformada de Fourier	33
2.1.1. Transformada de Fourier Discreta	34
2.1.2. Propriedade de translação da DFT	35
2.1.3. Propriedade de Escala da DFT	35
2.1.4. Propriedade de Rotação da DFT	35
2.2. Transformada de Mellin	36
2.3. Mapeamento Log-Polar	38
2.4. Mapeamento Log-Log	39
2.5. Obtendo Invariâncias à Rotação, Translação, Dilatações e	Escala 40
2.5.1. Invariância à Translação	40
2.5.2. Invariância à Rotação e Escala	41
2.5.3. Invariância a Dilatações Horizontais e Verticais	42
2.5.4. Propriedade Comutativa Entre Rotação e Dilatação	44
2.5.5. Invariância à Translação, Rotação e Escala Simultâneas	45
2.5.6. Invariância à Translação e Dilatações Verticais e Horizo	ntais
Simultâneas	46
2.6. Comparando Imagens	46
2.6.1. Distância Euclidiana	47
2.6.2. Correlação	47
2.6.3. Comparando Imagens com Invariâncias	48
2.6.4. Window Growing	49
2 The sector of a CIET (Coole Internet Freedom The sector)	50
3. Transformação SIFT (Scale Invariant Feature Transform)	52
3.1. Uma introdução Sobre Descritores Locais 2.2. Deserição de técnico SIET	52
3.2. Descrição da tecnica SIF I	53
3.2.1. Introdução 2.2.2. Deteccão do Extremes	55
2.2.2. Detecção de Extremios	55
2.2.4 Atribuição da Orientação dos Descritoros	63
3.2.5. Construção do Descritor Local	05
3.2.5. Construção do Desentor Local 3.2.6. Encontrando os Pontos em Comum	03 67
5.2.0. Encontrando os romos cin Comun	07
4. Registro e Correspondência de Imagens	69
4.1. Etapas de um Método de Registro	71
	, 1

4.2. Detecção e Casamento dos Pontos de Controle	73
4.3 Transformação de Coordenadas de uma Imagem	74
1.3.1 Mínimos Quadrados	76
4.2.2 Transformação Progrustas	70
4.3.2. Transformação Proclusies	/0
4.3.3. Transformação Afim	80
4.4. Refinando o Modelo de Transformação T	81
4.4.1. Transformada de Hough	81
4.4.2. RANSAC (Random Sample Consensus Algorithm)	83
443 Reajustando a Matriz de Pesos W	85
1.1.5. Realization de la Dados inconsistantos Atravás de Limier	87
4.4.4. Determinando-se Dados inconsistences Atraves de Linnar	07
4.5. Sobreposição das imagens Utilizando Ajuste Radiometrico dos Pixeis	0.0
Superpostos	88
5. Sistema Experimental	91
5.1 Dahâ ED1	01
5.1. KODO EKI	91
5.1.1. Hardware	92
5.1.2. Software	94
5.1.3. Interface com o Robô	95
(Ale suiture de Frankrige Nerve en 2 - Durante et a	00
6. Algoritmos de Exploração e Navegação Propostos	99
6.1. Algoritmo de Exploração	99
6.1.1. Panorâmicas	103
6.1.2. Identificação de Lugares de Interesse	104
6.1.3. Navegação para Nós Desconhecidos	105
6.1.4. Navegação para Nós Conhecidos	106
6.2. Componente 1 - Criando Imagens Panorâmicas Automaticamente	106
6.2.1. Comparação Entre Imagens e Construção da Matriz de	100
Transformação T	100
1 ansionnação a Casamanta das Pantas da Cantrala nar Carrelação Cruzada	100
6.2.2. Delecção e Casamenio dos Pontos de Controle por Correlação Cruzada	109
6.2.3. Descarte de Pontos de Controle Inconsistentes	111
6.2.3.1. Baixa Correlação	111
6.2.3.2. Má Correlação	111
6.2.3.3. Eliminação por Análise Amostral	112
6.2.3.4. RANSAC e Ajuste de Matriz de Pesos	113
6.2.4 Criando a panorâmica – Registro de Múltiplas Imagens	114
6.2.5 Extraindo Imagens da Panorâmica	115
6.3. Componente 2 - Segmentação da Imagem por <i>Ouadtraa</i> Baseada em	115
5.5. Componente 2 - Segmentação da imagem por Quadree Daseada em	116
	110
6.3.1. Visão Geral	116
6.3.2. Cálculo de Entropia	117
6.3.3. Processo <i>Quadtree</i>	118
6.3.4. Segmentação em Áreas de Interesse e Definição de <i>Feature Points</i>	121
6.3.5. Método Padrão	122
6.3.6. Método Open Close	124
6 3 7 Método Close Open	125
6.4. Visual Tracking: Acompanhamento de Faaturas e Navegação	127
6.4.1 Introdução	127
(4.1.1)	12/
0.4.2. Correspondencia de Multiplos Pontos para Imagens em Movimento	128
6.4.3. Busca e Atualização dos Pontos de Referência	130
6.4.4. Obtenção do modelo T	132

6.4.5. Navegação usando Visual Tracking	133
6.4.5.1. Correção de Direção do Robô	133
6.4.5.2. Navegação para Ponto Chave Auxiliado por Visão	135
6.5. Componente 3 - Navegação para Nó Desconhecido	137
6.5.1. Correção de Direção Usando a Transformação SIFT	138
6.5.2. Seguindo para o Nó Desconhecido	140
6.6. Componente 4 - Navegação para Nó Conhecido	142
6.6.1. Obtendo a Imagem de Referência	142
6.6.2. Navegação Utilizando-se de a técnica SIFT e Visual Tracking	143
6.6.3. Navegação Utilizando-se de Comparação de Transformações	
invariáveis	145
6.7. Componente 5 - Refinando o modelo criado através de algoritmos	
genéticos	149
6.7.1. Descrição do problema de adicionar novas adjacências em um grafo	150
6.7.2. O Algoritmo A*	151
6.7.2.1. Procedimento A*(G, Ninit, Ngoal, k, h)	152
6.7.3. Aplicando o Algoritmo Genético	152
6.7.4. Representação do cromossomo	153
6.7.5. Operadores utilizados	153
6.7.6. Método de seleção	154
6.7.7. Avaliação do Algoritmo Genético	154
6.7.8. O Programa desenvolvido	155
7. Experimentos e Resultados	156
7.1. Transformações Invariáveis	156
7.1.1. Fourier	161
7.1.2. Mellin do tipo 1	163
7.1.3. Mellin do tipo 2	165
7.1.4. Fourier Mellin do tipo 1	167
7.1.5. Fourier Mellin do tipo 2	169
7.2. Comparações entre Transformadas	171
Tabelas Gerais	173
7.2.1. Correlações	176
7.2.2. Mellin do tipo 1	178
7.2.3. Mellin do tipo 2	182
7.2.4. Fourier Mellin do tipo 1	185
7.2.5. Fourier Mellin do tipo 2	189
7.2.6. Conclusões gerais sobre as comparações entre Transformadas	192
7.3. Navegação utilizando transformações invariáveis – Análise de <i>Window</i>	
Growing	193
7.3.1. Imagens de longe – Encontrando a sub-janela	194
7.3.2. Encontrando a direção correta	196
7.3.2.1. Correlação	197
7.3.2.2. Mellin do tipo 1	198
7.3.2.3. Mellin do tipo 2	200
7.3.2.4. Fourier Mellin do tipo 1	201
7.3.2.5. Fourier Mellin do tipo 2	203
7.4. SIFT	204
/.5. Encontrando pontos de controle para montar imagens panorâmicas	214
7.5.1. Buscando pontos correlatos entre duas imagens	215

7.5.1.1. Eliminação por limiar de correlação – blocos 16 x 16	216
7.5.1.2. Eliminação por limiar de correlação – blocos 32 x 32	219
7.5.1.3. Eliminação por amostragem	222
7.5.1.4. Eliminação por RANSAC e matriz de pesos W	225
7.5.1.5. Eliminação por má correlação	228
7.6. Segmentação da imagem por <i>Quadtree</i> baseada em entropia	231
7.6.1. Diferentes métodos	231
7.6.1.1. Variando o limiar do valor de entropia para divisão quadtree:	233
7.6.1.2. Método Padrão	235
7.6.1.3. Método Open-Close	236
7.6.1.4. Método Close-Open	237
7.6.2. Tamanho de raios r utilizados para operações de abertura e fecham	ento 238
7.6.3. Aplicando filtro de média radial	240
7.6.4. Tamanho mínimo de regiões aceitas	241
7.6.5. Aplicando <i>Quadtree</i> em panorâmicas	242
7.7. Navegação para Nós Conhecidos e Desconhecidos utilizando-se de	
Visual Tracking e Transformação SIFT	244
7.7.1. SIFT	246
7.7.2. Visual Tracking	248
7.7.3. Condição de parada	253
7.8. Refinando o modelo utilizando Algoritmos Genéticos	255
7.8.1. Grafo "Espiral"	256
7.8.2. Grafo "Robô"	258
7.8.3. Grafos sem arcos	261
8. Conclusões e Trabalhos Futuros	263
8.1. Transformações Invariáveis	263
8.2. Window Growing	264
8.3. SIFT	265
8.4. Panorâmicas	265
8.5. Quadtree	266
8.6. Visual Tracking	267
8.7. Navegação auxiliada por Visual Tracking	267
8.8. Refinando o Modelo Criado Utilizando A.G.	268
8.9. Conclusões e Propostas Gerais para Trabalhos Futuros	269
9. Referências Bibliográficas	272

Lista de figuras

Figura 1-1: Representação métrica do ambiente	24
Figura 1-2: Representação Topológica do ambiente	25
Figura 2-1: Window Growing	49
Figura 2-2: Nova tomada de comparações	50
Figura 2-3: Diagrama de fluxo do procedimento de Window Growing	51
Figura 3-1: Imagem após filtro gaussiano com σ igual a 1.6, 2.4 e 3.2	56
Figura 3-2: Filtro DoG para imagens apresentadas na Figura 3-1	56
Figura 3-3: Construção das Diferenças de Gaussiana	58
Figura 3-4: Formação das Oitavas	59
Figura 3-5: Detecção de Máximos e Mínimos	59
Figura 3-6: Regiões com $n = 4$ e $k = 4$;	66
Figura 3-7: Direções do histograma	66
Figura 3-8: Construção do descritor	67
Figura 4-1: Casamento de pontos de controle	72
Figura 4-2: Registro de imagens	72
Figura 4-3: Transformação de uma imagem	74
Figura 4-4: Tranformação Procrustes	79
Figura 4-5: Transformação Afim	80
Figura 4-6: Superposição das imagens	89
Figura 4-7: Exemplo de ajuste radiométrico	90
Figura 5-1: ER1 – Personal Robot Sys	91
Figura 5-2: Vigas em x, placas laterais e saco com conectores e porcas	93
Figura 5-3: Rodízio e conjunto de motor com roda	93
Figura 5-4: Carregador de bateria, cabo de força e conector USB	93
Figura 5-5: Web Câmera utilizada	94
Figura 5-6: ER1 Robot Control Center	94
Figura 5-7: Interface com ER1	96
Figura 5-8: ER1 Robot Control Center Settings	96
Figura 6-1: Mapa de um ambiente navegado por nós	100
Figura 6-2: Árvore de nós	100
Figura 6-3: Visão Geral do Algoritmo	101
Figura 6-4: Exemplo de como é feita a exploração	102
Figura 6-5: Detecção e casamento de pontos de controle	109
Figura 6-6: Registro de múltiplas imagens	114
Figura 6-7: Visão geral do algoritmo de segmentação	117
Figura 6-8: <i>Quadtree</i>	119
Figura 6-9: Divisão por processo <i>Quadtree</i>	120
Figura 6-10: Exemplo da divisão baseada em entropia	121
Figura 6-11: Método padrão	123
Figura 6-12: Exemplo do método padrão	123
Figura 6-13: Método Open Close	124
Figura 6-14: Exemplo do método Open Close	125
Figura 6-15: Método Close Open	126
Figura 6-16: Exemplo do método close open	126
Figura 6-17: Diagrama do processo de Visual Tracking	129
Figura 6-18: Busca dos pontos de referência	130

Figura 6-19: Correção da direção do robô	134
Figura 6-20: Navegação para ponto chave auxiliado por visão	136
Figura 6-21: Navegação para nó desconhecido	137
Figura 6-22: Correção da direção usando a transformação SIFT	139
Figura 6-23: Navegando para nó desconhecido usando a transformação SIFT	141
Figura 6-24: Obtendo a imagem de referência	143
Figura 6-25: Navegação para um nó conhecido	146
Figura 6-26: Encontrando imagens para diferentes distâncias	147
Figura 6-27: Navegação através de transformadas invariáveis	148
Figura 6-28: Correção de ângulo	149
Figura 6-29: Interface do programa desenvolvido	155
Figura 6-30: Interface de uma das ferramentas do programa desenvolvido	155
Figura 7-1: Círculo, quadrado e triângulo	157
Figura 7-2: Círculos	158
Figura 7-3: Triângulos	158
Figura 7-4: Quadrados	159
Figura 7-5: Círculos com rotações centralizadas	160
Figura 7-6: Triângulos com rotações centralizadas	160
Figura 7-7: Quadrados com rotações centralizadas	160
Figura 7-8: Transformadas de Fourier para círculos	161
Figura 7-9: Transformadas de Fourier para triângulos	162
Figura 7-10: Transformadas de Fourier para Quadrados	162
Figura 7-11: Transformadas de Mellin para círculos	164
Figura 7-12: Transformadas de Mellin para triângulos	164
Figura 7-13: Transformadas de Mellin para quadrados	165
Figura 7-14: Transformadas de Mellin tipo 2 para círculos	166
Figura 7-15: Transformadas de Mellin tipo 2 para triângulos	166
Figura 7-16: Transformadas de Mellin tipo 2 para quadrados	167
Figura 7-17: Transformadas de Fourier Mellin tipo 1 para círculos	168
Figura 7-18: Transformadas de Fourier Mellin tipo 1 para quadrados	168
Figura 7-19: Transformadas de Fourier Mellin tipo 1 para triângulos	169
Figura 7-20: Transformadas de Fourier Mellin tipo 2 para círculos	170
Figura 7-21: Transformadas de Fourier Mellin tipo 2 para triângulos	170
Figura 7-22: Transformadas de Fourier Mellin tipo 2 para quadrados	171
Figura 7-23: Erro de Correlação – Círculo	177
Figura 7-24: Erro de Correlação – Triângulo	177
Figura 7-25: Erro de Correlação – Quadrado	178
Figura 7-26: Erro de Correlação para Mellin do tipo 1 – Círculo	179
Figura 7-27: Distância para Mellin do tipo 1 – Círculo	179
Figura 7-28: Erro de Correlação para Mellin do tipo 1 – Triângulo	180
Figura 7-29: Distância para Mellin do tipo 1 – Triângulo	180
Figura 7-30: Erro de Correlação para Mellin do tipo 1 – Quadrado	181
Figura 7-31: Distância para Mellin do tipo 1 – Quadrado	181
Figura 7-32: Erro de Correlação para Mellin do tipo 2 – Círculo	182
Figura 7-33: Distância para Mellin do tipo 2 – Círculo	183
Figura 7-34: Erro de Correlação para Mellin do tipo 2 – Triângulo	183
Figura 7-35: Distância para Mellin do tipo 2 – Triângulo	184
Figura 7-36: Erro de Correlação para Mellin do tipo 2 – Quadrado	184
Figura 7-37: Distância para Mellin do tipo 2 – Quadrado	185
Figura 7-38: Erro de Correlação para Fourier Mellin do tipo 1 – Círculo	186

Figura 7-39: Distância para Fourier Mellin do tipo 1 – Círculo	186
Figura 7-40: Erro de Correlação para Fourier Mellin do tipo 1 – Triângulo	187
Figura 7-41: Distância para Fourier Mellin do tipo 1 – Triângulo	187
Figura 7-42: Erro de Correlação para Fourier Mellin do tipo 1 – Quadrado	188
Figura 7-43: Distância para Fourier Mellin do tipo 1 – Quadrado	188
Figura 7-44: Erro de Correlação para Fourier Mellin do tipo 2 – Círculo	189
Figura 7-45: Distância para Fourier Mellin do tipo 2 – Círculo	190
Figura 7-46: Erro de Correlação para Fourier Mellin do tipo 2 – Triângulo	190
Figura 7-47: Distância para Fourier Mellin do tipo 2 – Triângulo	191
Figura 7-48: Erro de Correlação para Fourier Mellin do tipo 1 – Quadrado	191
Figura 7-49: Distância para Fourier Mellin do tipo 2 – Quadrado	192
Figura 7-50: Diferentes visões do robô: a) Próximo a parede;	
b) Afastado da parede; c) Afastado e em ângulo;	194
Figura 7-51: Janela obtida por: Correlação, correlação da Mellin do	
tipo 2, correlação da Mellin do tipo 2 e correlação da Fourier Mellin do	
tipo 1 e 2	195
Figura 7-52: Janela obtida por: Correlação Mellin do tipo 1	195
Figura 7-53: Janela obtida por: Distância da Fourier Mellin do tipo 2	
e distância da Mellin do tipo 1	196
Figura 7-54: Janela obtida por: Distância da Fourier Mellin do tipo 1 e	- / •
distância da Mellin do tipo 2	196
Figura 7-55: Erro de Correlação	198
Figura 7-56 [•] Erro de Correlação para Mellin do tipo 1	199
Figura 7-57 [.] Distância para Mellin do tipo 1	199
Figura 7-58: Erro de Correlação para Mellin do tipo 2	200
Figura 7-59: Distância para Mellin do tipo 2	201
Figura 7-60: Erro de Correlação para Fourier Mellin do tipo 1	202
Figura 7-61: Distância para Fourier Mellin do tipo 1	202
Figura 7-62: Erro de Correlação para Fourier Mellin do tipo 2	203
Figura 7-63: Distância para Fourier Mellin do tipo 2	204
Figura 7-64: Visão de perto e visão de longe	206
Figura 7-65: Visão de perto e visão de longe em ângulo	206
Figura 7-66. Visão de perto e visão de longe	207
Figura 7-67: Visão de perto e visão de longe em ângulo	207
Figura 7-68: Visão de perto e visão de longe	207
Figura 7-69: Visão de perto e visão de longe em ângulo	208
Figura 7-70: Visão de perto e visão de longe	208
Figura 7-71: Visão de perto e visão de longe em ângulo	208
Figura 7-72: Visão de perto e visão de longe	209
Figura 7-73: Visão de perto e visão de longe em ângulo	209
Figura 7-74: Visão de perto e visão de longe	209
Figura 7-75: Visão de perto e visão de longe em ângulo	210
Figura 7-76: Visão de perto e visão de longe	210
Figura 7-77: Visão de perto e visão de longe em ângulo	210
Figura 7-78: Visão de perto e visão de longe	210
Figura 7-70: Visão de perto e visão de longe em ângulo	211
Figura 7-80: Visão de perto e visão de longe	211
Figura 7-81: Visão de perto e visão de longe em ângulo	211 212
Figura 7-82: Visão de perto e visão de longe	212
Figura 7-83: Visão de perto e visão de longe em ângulo	212
rigura 7-05. Visao de perto e visao de longe em angulo	<i>∠</i> 1 <i>∠</i>

Figura 7-84: Visão de perto e visão de longe	213
Figura 7-85: Visão de perto e visão de longe em ângulo	213
Figura 7-86: Visão de perto e visão de longe	213
Figura 7-87: Visão de perto e visão de longe em ângulo	214
Figura 7-88: Percentual de pontos corretos para blocos 16 por 16	217
Figura 7-89: Erro médio para blocos 16 por 16	217
Figura 7-90: Pontos encontrados com limiar de correlação igual a 0	218
Figura 7-91: Pontos encontrados com limiar de correlação igual a 0,95	218
Figura 7-92: Geração de mosaico automática para limiar de correlação	
igual a 0,90	219
Figura 7-93: Percentual de pontos corretos para blocos 32 por 32	220
Figura 7-94: Erro médio para blocos 32 por 32	220
Figura 7-95: Pontos encontrados com limiar de correlação igual a 0	221
Figura 7-96: Pontos encontrados com limiar de correlação igual a 0,95	221
Figura 7-97: Geração de mosaico automática para limiar de correlação	
igual a 0,90	222
Figura 7-98: Erro médio para eliminação por amostragem	223
Figura 7-99: Pontos encontrados com limiar de correlação igual a 0	224
Figura 7-100: Pontos encontrados com limiar de correlação igual a 0,95	224
Figura 7-101: Geração de mosaico automática para limiar de correlação	
igual a 0,90	225
Figura 7-102: Percentual de pontos corretos para RANSAC e matriz de	
pesos W	225
Figura 7-103: Erro médio para RANSAC e matriz de pesos W	226
Figura 7-104: Pontos encontrados com limiar de correlação igual a 0	227
Figura 7-105: Pontos encontrados com limiar de correlação igual a 0,90	227
Figura 7-106: Geração de mosaico automática para limiar de correlação	
igual a 0,90	227
Figura 7-107: Percentual de pontos corretos para a técnica de eliminação	
por má correlação	228
Figura 7-108: Pontos encontrados com $\rho = 0.95$ e $\beta = 10\%$	229
Figura 7-109: Pontos encontrados com $\rho = 0.9$ e $\beta = 10\%$	229
Figura 7-110: Pontos encontrados com $\rho = 0.8$ e $\beta = 10\%$	229
Figura 7-111: Pontos encontrados com $\rho = 0.7$ e $\beta = 10\%$	230
Figura 7-112: Geração de mosaico automática para limiar de correlação	
igual a $\rho = 0.9 \text{ e} \beta = 30\%$	230
Figura 7-113: Figura <i>Airplane</i>	231
Figura 7-114: Diferentes métodos utilizados, a) Método padrão: b) Método	-01
Open-Close [•] c) Método Close-Open [•]	232
Figura 7-115. Diferentes limiares do valor de entropia para divisão	
<i>auadtree</i> a) Limiar igual a 6.5° b) Limiar igual a 6° c) Limiar igual a 5°	
d) Limiar igual a 4:	234
Figura 7-116: Diferentes limiares do valor de entropia para método	
padrão a) Limiar igual a 6 5 b) Limiar igual a 6 c) Limiar igual a 5 d)	
Limiar igual a 4 [·]	235
Figura 7-117. Diferentes limiares do valor de entropia para método	200
Open-Close a) Limiar igual a 65 b) Limiar igual a 6 c) Limiar	
igual a 5 [°] d) Limiar igual a 4 [°]	236
Figura 7-118. Diferentes limiares do valor de entropia para método	
Close-Open a) Limiar igual a 6 5 b) Limiar igual a 6 c) Limiar igual	
crose open. a, Emma Baar a o.e, of Emma Baar a o, of Emma Baar	

a 5; d) Limiar igual a 4;	237
Figura 7-119: Diferentes raios nas operações de abertura e fechamento	
do método Open- Close. a) Raio igual a 5; b) Raio igual a 7; c) Raio	
igual a 10	238
Figura 7-120: Diferentes raios nas operações de abertura e fechamento do	
método <i>Close-Open</i> . a) Raio igual a 5; b) Raio igual a 7; c) Raio igual a 10;	239
Figura 7-121: Diferentes raios para filtro de média. a) Sem filtro; b) Raio	
igual a 2; c) Raio igual a 4; d) Raio igual a 8;	240
Figura 7-122: Diferentes tamanhos de regiões mínimos, a) Sem	
restrição: b) Mínimo de 1000 <i>pixels</i> : c) Mínimo de 2000 <i>pixels</i> :	
d) Mínimo de 3000 <i>pixels</i>	241
Figura 7-123: Imagem panorâmica inteira com regiões sobrepostas	242
Figura 7-124: Metade esquerda da panorâmica	243
Figura 7-125: Metade direita da panorâmica	243
Figura 7-126: Imagem panorâmica inteira com regiões sobrepostas	243
Figura 7-127: Metade esquerda da panorâmica	243
Figura 7-128: Metade direita da panorâmica	243
Figura 7-129: Imagem panorâmica inteira com regiões sobrepostas	244
Figura 7-130 [°] Metade esquerda da panorâmica	244
Figura 7-131: Metade direita da panorâmica	244
Figura 7-132: Diferentes visões do robô	246
Figura 7-133: Pontos encontrados em comum	247
Figura 7-134: Iteração 1	248
Figura 7-135: Iteração 5	249
Figura 7-136: Iteração 10	249
Figura 7-137: Iteração 15	250
Figura 7-138: Iteração 18	250
Figura 7-139: Iteração 20	251
Figura 7-140: Iteração 25	251
Figura 7-141: Iteração 30	252
Figura 7-142: Erro médio das extremidades	254
Figura 7-143: Erro de comparação do tipo Fourier Mellin	255
Figura 7-144: (a) Grafo <i>Espiral</i> sem adição de adiacências. (b) Adição	
de 3 adiacências pelo A.G e busca aleatória. (c) Adicão de 5 adiacências	
nelo	256
Figura 7-145: Aptidão dos melhores indivíduos x Gerações para grafo	
Espiral - (a) Adição de 3 adiacências. (b) Adição de 5 adiacências.	
(c) Adição de 7 adjacências. (d) Adição de 10 adjacências. OBS:	
As curvas em rosas são referentes à busca aleatória e as curvas	
azuis são referentes ao A.G.	257
Figura 7-146: (a) Grafo <i>Robô</i> sem adição de adiacências. (b) Adição	
de 1 adiacência pelo A.G e busca aleatória. (c) Adicão de 3 adiacências	
pelo A.G. (d) Adição de 3 adiacências pela busca aleatória. (e) Adição	
de 5 adjacências pelo A.G. (f) Adicão de 5 adjacências pela busca	
aleatória. (g) Adição de 10 adiacências pelo A.G. h) Adição de 10	
adjacências pela busca aleatória.	259
Figura 7-147: Aptidão dos melhores indivíduos x Gerações para grafo	
Robô - (a) Adição de 1 adjacência, (b) Adição de 3 adjacências, (c) Adição	
de 5 adjacências, (d) Adição de 10 adjacências. OBS: As curvas em	
rosa são referentes à busca aleatória e as curvas azuis são referentes ao A.G.	260

Figura 7-148: (a) Grafo <i>Espiral Sem Arcos</i> sem adição de adjacências,	
(b) Grafo Espiral Sem Arcos com adição de 1 adjacência pelo A.G,	
(c) Grafo Espiral Sem Arcos com adição de 1 adjacência pela busca	
aleatória, (d) Grafo Robô Sem Arcos sem adição de adjacências,	
(e) Grafo Robô Sem Arcos com adição de 1 adjacência pelo A.G.	261
Figura 7-149: Aptidão dos melhores indivíduos x Gerações - (a) Adição	
de 9 adjacências no grafo Espiral sem Arcos, (b) Adição de 24	
adjacências no grafo Robô sem arcos. OBS: As curvas rosas são	
referentes à busca aleatória e as curvas azuis são referentes ao A.G.	261

Lista de tabelas

Tabela 4-1: Mapeando as coordenadas $p=(x,y)$ de uma imagem em novas	
coordenadas $p'=(x',y')$.	76
Tabela 6-1: Tabela que acompanha a imagem panorâmica	115
Tabela 7-1: Comparações para o círculo	173
Tabela 7-2: Comparações para o triângulo	174
Tabela 7-3: Comparações para o quadrado	175
Tabela 7-4: Eliminação por limiar de correlação – blocos 16 x 16	216
Tabela 7-5: Eliminação por limiar de correlação para blocos 32 por 32	219
Tabela 7-6 - Eliminação por amostragem	222
Tabela 7-7: Eliminação por RANSAC e matriz de pesos W	225
Tabela 7-8: Eliminação por má correlação	228